Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series

نویسندگان

  • Tirusew Asefa
  • Mariush Kemblowski
  • Upmanu Lall
  • Gilberto Urroz
چکیده

[1] The reconstruction of low-order nonlinear dynamics from the time series of a state variable has been an active area of research in the last decade. The 154 year long, biweekly time series of the Great Salt Lake volume has been analyzed by many researchers from this perspective. In this study, we present the application of a powerful state space reconstruction methodology using the method of support vector machines (SVM) to this data set. SVM are machine learning systems that use a hypothesis space of linear functions in a kernel-induced higher-dimensional feature space. SVM are optimized by minimizing a bound on a generalized error (risk) measure rather than just the mean square error over a training set. Under Mercer’s conditions on the kernels the corresponding optimization problems are convex; hence global optimal solutions can be readily computed. The SVM-based reconstruction is used to develop time series forecasts for multiple lead times ranging from 2 weeks to several months. Unlike previously reported methodologies, SVM are able to extract the dynamics using only a few past observed data points out of the training examples. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analysis, with a particular interest in forecasting extreme states. Efforts are also made to assess variations in predictability as a function of initial conditions and as a function of the degree of extrapolation from the state space used for learning the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Wavelet-based Relevance Vector Regression Model Coupled with Phase Space Reconstruction for Exchange Rate Forecasting

Due to the high risk associated with international transactions, exchange rate forecasting is a challenging and important field in modern time series analysis. The difficulty in forecasting arises from the nonlinearity and non-stationarity inherent in exchange rate dynamics. To address these problems, this study proposes a hybrid model that couples two effective feature extraction techniques, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005